

Nitrogen Fixing Tree Start-up Guide

Nitrogen fixing trees (NFTs) have the ability to take nitrogen from the air and pass it on to other plants through the cycling of organic matter. Nitrogen is an essential nutrient for plant growth, and NFTs are a major source of nitrogen fertility in tropical ecosystems. When integrated with a farm, orchard, garden, or forest, NFTs can be a major source of nitrogen fertilizer and mulch for crops. Using NFTs can greatly reduce the need to purchase synthetic nitrogen fertilizers, thus lowering cash outputs and increasing self-sufficiency.

Aside from their nutrient and organic matter contribution, NFTs have many other uses on the farm, including animal fodder, bee forage (for honey production), living fences, wind shelter, and human food.

This guide provides basic information on how NFTs work, and details on how to plant, manage and use them to enhance soil fertility.

What are nitrogen fixing trees?

Nitrogen fixing trees (NFTs) are trees and shrubs that have the ability, through a symbiotic association with certain soil bacteria, to take nitrogen out of the air and use it for growth. This handbook focuses some on NFT species that are important in agriculture.

How NFTs get their nitrogen

Nitrogen is an essential nutrient for plant growth. Although the lack of nitrogen is often viewed as a problem in agriculture, nature has an immense reserve of nitrogen everywhere plants grow—in the air. Air consists of approximately 80% nitrogen gas (N₂), representing about 8000 lbs. of nitrogen gas (N₂), representing about 8000 lbs. of nitrogen above every acre of land (or 9000 kg above every hectare). However, N₂ is a stable gas, normally unavailable to plants. Nitrogen fixation is a process by which certain soil bacteria on the roots of nitrogen fixing plants "fix" or gather nitrogen from the air, and allow their NFT hosts to incorporate it into their leaves and tissues.

Crop Area Crop Area Crop Area Crop Area

Uses of NFTs in Cropping Systems

Windbreak Living fence Fodder Timber Wildlife Habitat Mulch bank Fodder bank Timber/pole wood Wildlife Habitat Shade Bee forage Nurse trees

Contour hedgerows Alley cropping Fodder hedges Erosion control

Authors: Craig R. Elevitch and Kim M. Wilkinson, Illustrator: Christi A. Sobel Reproduction: We encourage you to share this information with others. All or part of this publication may be reproduced for noncommercial educational purposes only, with credit given to the source. For commercial reproductions, contact the publisher. © 1999 Permanent Agriculture Resources. All rights reserved. Electronic distribution: Download this publication at http://www.agroforestry.net Publisher: Permanent Agriculture Resources, P.O. Box 428, Holualoa, HI 96725 USA; Tel: 808-324-4427; Fax: 808-324-4129; E-mail: par@agroforestry.net; Web site: http://www.agroforestry.net Acknowledgments: Publication of this guide was made possible through a grant from the U.S. Department of Agriculture's Western Region Sustainable Agriculture Research and Education (WSARE) and EPA/Agriculture in Concert with the Environment programs. Substantial contributions of material were made by the Forest, Farm and Community Tree Network (FACT Net).

Nitrogen fixing trees in nature and agriculture

In nature, when nitrogen fixing trees drop their leaves or die back, the organic matter and fertility they accumulated in their tissues is passed on to other plants. This process is the major source of nitrogen fertility in tropical ecosystems. When nitrogen fixing trees are incorporated in a farm system, they can be cut back repeatedly, and the cuttings applied to the crops as mulch. With proper management, NFTs can be a major source of fertility for crops and also provide the benefits of mulch and organic matter.

Benefits of using nitrogen fixation

Because nitrogen is essential for plant growth, farmers often purchase nitrogen fertilizers to maintain their productivity. Aside from being costly, synthetic nitrogen fertilizer is produced using an energy intensive process, and the end product is nitrogen in a form which can be detrimental to soil microorganisms and which can pollute ground water due to rapid loss through leaching. Incorporating nitrogen fixing trees is a way for a farmer to restore natural fertility processes to the farm system, growing a source of nitrogen fertilizer onsite, rather than having to buy it.

In farm systems using NFTs, it is estimated that 100-1000 lbs. of nitrogen per acre (110–1100 kg per hectare) are accumulated every year by the NFTs, depending on species, soil and climate, *Rhizobium* efficiency, and management.

Incorporating nitrogen fixing trees in certain kinds of farm systems can enable the farmer to grow almost all of the nitrogen fertility necessary for crop production right on-site. Fertility provided by nitrogen fixing plants can promote healthy plants and soil life naturally. One study in Hawaii, for example, found that by using 15% of the land for NFTs, approximately 10 tons of mulch could be produced per acre per year, containing 185 lb nitrogen, 11 lb phosphorous and 72 lb potassium (210 kg N/ha, 12 kg K/ha, 80 kg P/ha).

More than fertility—the importance of mulch and organic matter

In addition to the fertility, the mulch and organic matter provided by nitrogen fixing trees is important for healthy plants and soil. Mulching improves nutrient and water retention in the soil, encourages favorable soil microbial activity and worms, and suppresses weed growth. When properly done, mulching can significantly improve the well-being of plants and reduce maintenance as compared to bare soil culture. Mulched plants have better vigor and, consequently may have improved resistance to pests and diseases.

Multiple uses and products of NFTs

Aside from the production of abundant fertilizer and mulch, many NFTs have other functions and products. Services provided by NFTs can include windbreak, soil

How NFTs Work: Biological Nitrogen Fixation

Working with a group of bacteria called rhizobia, NFTs are able to pull nitrogen out of the air and accumulate it their tissue. The bacteria, which are normally free-living in the soil in the native range of a particular legume, infect (inoculate) the root hairs of the plant and are housed in small root structures called nodules. The plant provides energy to feed the bacteria and fuel the nitrogen fixation process. In return, the plant receives nitrogen for growth.

There are thousands of strains of rhizobia, and they need to be matched up with the proper species of NFT to be effective. Certain strains of rhizobia will infect many hosts, certain hosts will accept many different strains of rhizobia. Some hosts may be nodulated by several strains of rhizobia, but growth may be enhanced only by particular strains. Therefore, when introducing NFTs to a new area it is recommended to also introduce a known effective symbiotic rhizobia strain. Such effective strains have been identified for thousands of the important nitrogen fixing legumes, and can be purchased at low cost for the value returned. Soil from nearby inoculated plants can also inoculate seedlings of the same species.

Nitrogen Fixing Tree Start-Up Guide

stabilization, living fence, and shade. Products include fuel wood, animal fodder, and nectar for honey bees. Therefore, when selecting NFTs for a project, it is beneficial to consider not only mulch production, but other products and services that could be of value to the farm now or in the future (see chart on pages 5–6 for specific species products and services).

Factors to consider in species selection

The goal with species selection is to put the right tree in the right place. The environmental tolerances of the tree (rainfall, temperature, etc.) should be the most important consideration in choosing the appropriate species for your area. Other factors to consider include:

- Growth rate—Do you want a highly productive species, or one with less vigorous growth? How many times per year do you want to prune?
- Weediness—Can you manage a potentially weedy

Certain NFT species provide excellent **fodder** for animals like goats, sheep, cows, and rabbits. In some cases, leaves or pods from NFTs can make up almost 50% of an animal's diet.

species, or should you take care to use only noninvasive ones because the trees might bear seeds unless they are regularly pruned back?

- Other products—Might you in the future want to use your NFTs as animal fodder, firewood or bee forage? Which secondary product needs are highest priority?
- Other functions—Does your site have a particular need for wind protection or erosion control?

Once you have a list of promising species already present in your area, consider new species such as some of those presented in the chart on the following pages. A trial of several species is very valuable in determining which of the candidate species will thrive on your site. Within 6–12 months of observing growth, there is a good chance you will determine which species are best for you in your particular situation.

Many NFTs yield good quality **fuelwood**, and regrow when cut back rather than having to be replanted after harvest.

Some NFTs can be integrated with crops that prefer light **shade**, such as coffee and cacao. The NFTs can then be cut back for mulch and to allow the crops to be in full sun when necessary to promote fruiting or flowering.

Functions of nitrogen fixing trees in nature	How this function can be used in farming
Providing fertility to other plants in the ecosystem by dropping their organic matter	NFTs can be cut back and the prunings used as an on-site source of mulch and fertilizer for crops
"Pioneering" harsh, damaged, or open areas, boosting fertility and moderating harsh conditions	To increase fertility and organic matter in a low-fertility area prior to planting
Stabilizing soil with an extensive root system	To help prevent erosion
Serving other roles and making other connections in a diverse ecosystem	To provide animal fodder, shade, wind protection, bee forage, fuel wood, etc. to other elements in diversified farms

Selecting NFTs for your project

The best way to learn about new trees is to see how they grow and how they are being used by other farmers in your area. There is no substitute for experience. Start by talking with farmers in your area to see which NFTs grow well in your region. Important questions to ask are: How vigorous is the tree? How does the tree stand up to wind and drought? Does the

Tip: A walk, bicycle

ride or drive through

your community is a

learning about NFTs

growing in your area.

good way to start

that are already

tree readily regrow from cutting? Does it have undesirable characteristics, such as, abundant seed productions and a tendency to become weedy?

Seed Sources

Once you have selected the appropriate species to try in your planting, you are ready to procure seeds or seedlings. The three organizations listed in the back of this guide can help you locate sources of seeds, or you can ask your local extension worker to help you. If possible, using select seed is recommended. For many species, such as *Leucaena* and *Gliricidia*, university programs have worked to select improved trees for many years. Trees from select seed often yield better, are better adapted to a wide range of sites, provide improved fodder quality and are more resistant to pests and diseases. Such seed may cost 2-3 times as much as unselected seed of the same species, but can easily pay for itself many times over due to increased productivity.

NFTs can provide:

Shade Wind shelter Living fence Improved fallow Improved pasture Mulch Fodder Bee forage Human food Fuel wood Timber Fiber Resins Dves Tannins Medicine Food Fertility enhancement Soil stabilization Beauty Oxygen Wildlife habitat Bird habitat Increased self-sufficiency Nutrient cycling Farm diversity

How to use the chart of NFT uses/products to help you select species for your project

The chart below is meant to help guide you in selecting the best species for your needs, goals, and site conditions. To use it:

- 1) Determine your farm's environment: Humid, Arid/Semi-arid or Upland (see Key for guidance).
- 2) Determine the most important product (for example, organic matter). Find that product on the top of the chart, and look for species with a '•' or a '>' symbol in that column. When you see a species with that symbol in that column, that is a good species to try.
- 3) Look for other uses and tolerances that are desirable for species for your project. For example, perhaps you need species that can tolerate acid soils, and you'd like one with potential to be used as a windbreak component too. Again, look for species that have a '•' or '>' sign in the column under that use or tolerance.

(From this example, in the Humid Tropics, desiring species that yield organic matter, tolerate acid soil, and be used as a windbreak component, you should find that *Calliandra calothyrsus* and *Leucaena diversifolia* are good species to try.)

Key For Characteristics Chart

- = experience for this purpose
- > = potential for this purpose

<u>Uses</u>

org mat = organic matter for fertilizer and mulch fodder = animal fodder uses food = food uses for people timber = wood suitable for building, crafts live fence = component in living fence, fence posts fuel wood = wood suitable for burning as fuel shade = good shade tree for crops or pasture ornament = particularly ornamental windbreak = good component of a windbreak

<u>Tolerances</u>

salt = tolerates saline conditions
dry = tolerates drought, arid conditions
poor drainage = tolerates waterlogged soil
acid = tolerates acid soils
alkaline = tolerates alkaline soils

Height

in meters at approximately 10 years growth

	rainfall (in.)	rainfall (mm)	Average temp. (°F)	Average temp. (C°)
Humid Tropics	>40 inches	>1000 mm	>68°F	>20 C°
Arid/Semi-Arid	<40 inches	<1000 mm	>68°F	>20 C°
Upland	>40 inches	>1000 mm	<68°F	<20 C°

HUMID TROPICS	org	fod-		tim-	live	fuel		orna-	wind			poor		alka-	height
	mat	der	food	ber	fence	wood	shade	ment	break	salt	dry	drain	acid	line	meters
Acacia angustissima	•	>				>							•		3-5
Acacia auriculiformis				•		•	•	•		•	•	•	•	•	20
Acacia mangium		•		•		•									25
Albizia lebbeck	>	•		•		•	•	•	•	•	•		•	•	20
Albizia saman		•	>	•		•	•	•	>						15
Cajanus cajan	>	•	•			•					•		•		3-5
Calliandra calothyrsus	•	>				•		•	•		•		•		8
Dalbergia sissoo		>		•		•	•		>	•	•				30
Desmodium rensonii	•	•											•		2-3
Enterolobium cyclocarpum	>	•		•		•	•	•			•			•	35
Erythrina poeppigiana	>	•			•		•	•	•						30
Erythrina variegata	>	•			•			•	•						10
Flemingia macrophylla	•	>				>							•		2-3
Gliricidia sepium	•	>		•	•	•	•	•	>	•	•				10
Inga edulis	>		•			•	•	•	•		•		•		18
Intsia bijuga				•		•			•	•			•		20
Leucaena diversifolia	•	>				•	•		>				>		18
Leucaena leucocephala	•	•	•	>		•	•		•		•				18
Paraserianthes falcataria	•						•	•			•				45
Pongamia pinnata		•		•		•		•		•				•	15
Pterocarpus indicus				•	•	•	•	•	•		•				30
Sesbania grandiflora	>	•	•			•	•			•		•		•	10
Sesbania sesban	•	•	•						>	•	•	•		•	4
Tephrosia vogelii	•							•							3

Table of uses/products for some popular NFT's

ARID & SEMI-ARID	org	fod-		tim-	live			orna-	wind					alka-	· height
	mat	der	food	ber	fence	fuel	shade	e ment	break	salt	dry	wet	acid	line	meters
Acacia holosericea			•			•	•	•	•	•	•	•	•		5-10
Acacia confusa	>			•		•	•	•	•	•	•				10
Albizia guachapele				•		•	•	•	>						10
Albizia lebbeck	>	•		•		•	•	•	•	•	•		•	•	20
Albizia saman		•	>	•		•	•	•	>						15
Chamaecytisus palmensis	>	•	>			•			•		•		•	•	5-7
Cajanus cajan	>	•	•			•					•		•		3-5
Dalbergia sissoo		>		•		•	•		>	•	•				30
Dalbergia retusa		>		•		•	•		>	•	•				30
Enterolobium cyclocarpum	>	•		•		•	•	•			•			•	35
Leucaena leucocephala	•	•	•	>		•	•		•		•				18
Sesbania sesban	•	•	•						>	•	•	•		•	4
UPLAND	org	fod-		tim-	live			orna-	wind					alka-	· height
	mat	der	food	ber	fence	fuel	shade	e ment	break	salt	dry	wet	acid	line	meters
Acacia angustissima	•	>				>							•		3-5
Acacia koa				•		•	•				•		•		40
Acacia mearnsii	•			•		•			•		•		•		10
Calliandra calothyrsus	•	>				•		•	•		•		•		8
Erythrina poeppigiana	>	•			•		•	•	•						30
Inga edulis	>		•			•	•	•	•		•		•		18
Leucaena diversifolia	•	>				•	•		>				>		18
Leucaena esculenta	•	•	•	>		•	•								8
Mimosa scabrella				•	•	•	•	•					•		15
Paraserianthes falcataria	•						•	•			•				45

Chart of uses/products for some popular NFT's

Some Common Tree Legumes in Hawaii

<u>Nitrogen Fixing:</u>				
<u>Common Name</u>	<u>Botanical Name</u>	<u>Family</u>	<u>Primary Uses</u>	<u>Weediness</u>
Acacia confusa	Formosa koa	Mimosoideae	windbreak, fuel wood, ornamental	high
Acacia koa	Koa	Mimosoideae	timber, windbreak	_
Acacia koaia	Koaia	Mimosoideae	craft wood, windbreak, ornamental	_
Acacia mearnsii	Black Wattle	Mimosoideae	fuel wood, tannin	high
Albizia lebbeck	White Monkeypod	Mimosoideae	shade, ornamental	moderate
Albizia saman	Monkeypod	Mimosoideae	shade, timber, fodder, ornamental	moderate
Enterolobium cyclocarpum	Ear pod	Mimosoideae	shade, fodder, timber	$_{ m slight}$
Erythrina variegata	Coral tree	Papilionoideae	shade, ornamental	$_{ m slight}$
Erythrina variegata var.	Columnar wili wili	Papilionoideae	hedge, fodder, living stakes	$_{ m slight}$
Erythrina sandwicensis	Wili Wili	Papilionoideae	ornamental, shade	
Leucaena leucocephala	Haole koa	Mimosoideae	fodder, fuel wood, windbreak	high
Paraserianthes falcataria	Albizia	Mimosoideae	pulp wood, organic matter	high
Pithecellobium dulce	Opiuma	Mimosoideae	fodder, shade, windbreak	moderate
Prosopis pallida	Kiawe	Mimosoideae	fodder, shade, windbreak	high

NFT environmental adaptation chart by use (Source: FACT Net (formerly NFTA))

GREEN MANURE, SOIL EROSION CONTROL, ALLEY FARMING						
<u>Arid and Semi-Arid Tropics</u> Albizia lebbeck Cajanus cajan Chamaecytisus palmensis	Humid Tropics Acacia angustissima Albizia lebbeck Albizia saman (syn. Samanea saman) Cajanus cajan Calliandra calothyrsus Desmodium gyroides (syn. Codariocalyx gyroides) Desmodium nicaraguense (syn. Desmodium rensonii) Enterolobium cyclocarpum Gliricidia sepium Leucaena leucocephala Leucaena diversifolia Sesbania grandiflora Sesbania sesban Tephrosia candida Tephrosia vogelii	Highland Tropics Calliandra calothyrsus Chamaecytisus palmensis Leucaena diversifolia Paraserianthes lophantha (syn. Albizia lophantha) Sesbania sesban <u>Temperate</u> Albizia julibrissin Chamaecytisus palmensis Lespedeza bicolor				
<u>Arid and Semi-Arid Tropics</u> Dalbergia melanoxylon Dalbergia sissoo Pterocarpus erinaceus	QUALITY TIMBER SPECT <u>Humid Topics</u> Albizia saman (syn. Samanea saman) Dalbergia latifolia Dalbergia retusa Enterolobium cyclocarpum Pericopsis elata Pterocarpus angolensis Pterocarpus indicus Pterocarpus soyauxii	IES <u>Highland Tropics</u> Acacia koa Acacia melanoxylon Tipuana tipu <u>Temperate</u> none				
Arid and Semi-Arid Tropics Acacia polyacantha Acacia saligna Albizia lebbeck Faidherbia albida (syn. Acacia albida) Pithecellobium dulce	ROUGHCUT TIMBER SPE Humid Topics Acacia auriculiformis Acacia crassicarpa Acacia mangium Paraserianthes falcataria (syn. Albizia falcataria)	CIES <u>Highland Tropics</u> Acacia mearnsii Alnus acuminata Alnus nepalensis Mimosa scabrella <u>Temperate</u> Alnus rubra Robinia pseudoacacia				

Elevitch/Wilkinson

NFT environmental adaptation chart by use (Source: FACT Net (NFTA))

FUELWOOD

Arid and Semi-Arid Tropics Humid Topics Acacia auriculiformis Acacia holosericea Acacia nilotica Acacia crassicarpa Acacia saligna Acacia mangium Acacia seyal Albizia saman Acacia tortilis Casuarina equisetifolia Albizia lebbeck Calliandra calothyrsus Casuarina cunninghamiana Cajanus cajan Casuarina equisetifolia Casuarina junghuhniana Dalbergia sissoo Enterolobium cyclocarpum Faidherbia albida Gliricidia sepium (syn. Acacia albida) Leucaena leucocephala Gliricidia sepium Leucaena diversifolia Pithecellobium dulce Mimosa caesalpiniaefolia Prosopis alba/chilensis Prosopis cineraria Prosopis juliflora/pallida

Highland Tropics Acacia mearnsii Alnus acuminata Alnus nepalensis Casuarina cunninghamiana Cas. junghuhniana Inga vera Leucaena diversifolia Mimosa scabrella

<u>Temperate</u> Alnus rubra Caragana arborescens Elaeagnus angustifolia Robinia pseudoacacia

FODDER

Arid and Semi-Arid TropicsHumid TropicsAcacia aneuraAlbizia lebbeckAcacia niloticaAlbizia samanAcacia tortilis(syn. SamaneaAlbizia lebbeckCajanus cajanCajanus cajanCalliandra caloChamaecytisus palmensisDesmodium gyFaidherbia albida(syn. Codarioca(syn. Acacia albida)Desmodium nicPithecellobium dulce(syn. DesmodiuProsopis cinerariaGliricidia sepiuProsopis juliflora/pallidaLeucaena leuco

Albizia lebbeck Albizia saman (syn. Samanea saman) Cajanus cajan Calliandra calothyrsus Desmodium gyroides (syn. Codariocalyx gyroides) Desmodium nicaraguense (syn. Desmodium rensonii) Enterolobium cyclocarpum Gliricidia sepium Leucaena leucocephala Leucaena diversifolia Sesbania grandiflora Sesbania sesban <u>Highland Tropics</u> Calliandra calothyrsus Chamaecytisus palmensis Leuceana diversifolia Paraserianthes lophantha (syn. Albizia lophantha)

<u>Temperate</u> Lespedeza bicolor Robinia pseudoacacia

HUMAN FOOD

Arid and Semi-Arid Tropics	<u>Humid Tropics</u>	<u>Highland Tropics</u>
Acacia aneura	Acacia pennata ssp insuavis	Erythrina edulis
Acacia nilotica	Cajanus cajan	Inga edulis
Acacia senegal	Enterolobium cyclocarpum	Inga feuillei
Cajanus cajan	Inga edulis	Myrica esculenta
Cordeauxia edulis	Inga vera	
Geoffroea decorticans	Leucaena leucocephala	<u>Temperate</u>
Inga vera	Parkia filicoidea	Elaeagnus spp.
Olneya tesota	Parkia javanica	Hippophae rhamnoides
Pithecellobium dulce	Parkia speciosa	Robinia pseudoacacia
Prosopis cineraria	Pentaclethra macrophylla	Shepherdia argentea
Prosopis juliflora/pallida	Pithecellobium dulce	
Sesbania grandiflora	Sesbania grandiflora	

Seed Pregermination Treatment

The seed of many nitrogen fixing trees requires pretreatment in order to stimulate germination. The hard seed coat must be scarified in order to break dormancy and allow absorption of water. See the table for many common NFTs whose seed requires pretreatment to germinate. There are several methods for scarification—mechanical and hot water are common. Mechanical methods of breaking the seed coat such as nicking with a nail clippers or file are appropriate for small seed lots. Nick the seed just enough to break through the outer seed coat. To avoid damaging the cotyledons and embryo nick the seed on

the end opposite the point of attachment to the pod. Hot water works well for larger seed lots and small seeded species such as *Sesbania*. Generally, the water temperature should be $158-194^{\circ}F$ (70-90C°). The volume ratio should be 5-10 parts water to one part

seeds. Seeds may be soaked overnight at room temperature after hot water treatment.

Inoculation

In order to optimize the ability of NFTs to fix nitrogen, seeds or small seedlings should be inoculated with a specific strain of *Rhizobium* bacteria. The best method for ensuring effective nitrogen fixation is to introduce a known effective strain of *Rhizobium* (purchased or gathered from soil) to the potting medium at the time of sowing. Large, healthy nodules may also be used to inoculate seeds. To determine if the nodule is effective, it may be cut open. Effective nodules will have a reddish pigment inside. Commercial inoculants, which www.agroforestry.net

Some common NFT species requiring seed pretreatment for germination

	Pregermin.	Approx #
<u>Species Name</u>	<u>treatment</u>	<u>seeds per kg</u>
Acacia angustissima	H(2 min)	90,000
Acacia auriculiformis	H(30 sec), S	30-90,000
Acacia confusa	N, H(1 min)	30,000
Acacia holosericea	H(1 min), S	70-80,000
Acacia koa	H(2 min), S	8-20,000
Acacia mangium	H(30 sec), S	80-100,000
Albizia lebbeck	N, H(2 min)	10,000
Albizia saman	N, H(2 min)	6,000
Cajanus cajan	none	7,000
Calliandra calothyrsus	N, H(2 min)	18,000
Dalbergia sissoo	S	15,000
Desmodium rensonii	none	200,000
Erythrina poeppigiana	S	3,000
Enterolobium cyclocarpum	Ν	1,000
Flemingia macrophylla	none	50,000
Gliricidia sepium	none	7,000
Inga species	none	100-200
Leucaena diversifolia	N, H(2 min)	30,000
Leucaena leucocephala	N, H(2 min)	15,000
Mimosa scabrella	H(3 min)	60-90,000
Paraserianthes falcataria	N, H(2 min)	40,000
Pterocarpus indica	S	1,500
Robinia pseudoacacia	H(2 min), S	35 - 50,000
Senna siamea	S	20,000
Sesbania grandiflora	S, N, H(1 mir	n) $20,000$
Sesbania sesban	N, H(1 min)	80,000
Tephrosia vogelii	N, H(1 min)	30,000
Pregermination treatments	s are marked :	as follows:
N = Nick		
H(time) = Hot water (time	<u>e)</u>	
S = Soak in water of	vernight	

are living cultures of bacteria, are perishable, and care should be taken to keep inoculants cool and slightly moist. Inoculation should take place immediately before sowing in moist soil or other potting media. Therefore, all seed handling such as cleaning and scarification should take place before inoculation. Seeds which have been treated with pesticides must be thoroughly rinsed in water before inoculating, or the living bacteria cultures may be killed. A sticking agent such as vegetable oil or sugar solution (1 part sugar to 9 parts water) is applied sparingly to seeds, and inoculant dusted into the mix. Do not expose inoculated seed to extremes in temperature or direct sunlight. If seedlings appear yellowish after 4–6 weeks, this may indicate inoculation was unsuccessful. It would then be advisable to re-inoculate the seedlings by watering in solution of 5 gm peat based inoculant per liter water.

2. Add the inoculant to the seeds (about 6 teaspoons inoculant per kilo of seed)

Sowing NFT Seeds in the Nursery

Sowing of scarified and inoculated seeds can take place in the nursery or, if rainfall and other conditions allow, directly in the field. For best results in the nursery, planting media should be well-drained and kept moist, but not wet. Do not over-fertilize with nitrogen fertilizers, as this will inhibit nodulation.

Direct Seeding

Direct seeding in the field should be done during a season when adequate rainfall is expected. Direct seeding works well in areas where weeds can be controlled, otherwise young tree seedlings can easily be shaded by weeds, wither and die. Seeding beds should be carefully prepared by first bearing the soil using

Plant in the nursery or directly in the field. Plant seeds about as deep as the seed is wide.

hand tools such as a pick or power tools such as a weedeater blade. In certain situations, a one-time application of herbicide may be appropriate. The cleared area can then be limed and amended with other nutrients prior to seeding. It is recommended to

Elevitch/Wilkinson

3. Stir inoculant into seeds coated with sugar sticking agent, or place inoculant in bag with seeds and shake until seeds are thoroughly coated with inoculant

place 1-2 handfuls of high quality weed free potting mix where seeds are to be sown. Sow the seeds at a depth about equivalent to the width of the seed, taking care

to lightly tamp the soil around them. Mulching lightly with sawdust or similar material in the area over the seeds will greatly improve seedling growth and weed control during the early stages of growth. If regular rainfall is not expected during the first 4–8 weeks

Tip: If you start some seedlings in the nursery on the same day that you seed in the field, the seedlings will be ready to fill in where necessary 2–4 months later.

after sowing then irrigation may be necessary. The greatest cause of seedling losses is desiccation. Some

predation by insects, birds and rodents is also to be expected—plant 4–6 seeds in each hole to assure survival of several seedlings. A few weeks after sowing, cull the smaller and weaker seedlings, leaving the strongest.

Early maintenance and troubleshooting during establishment

a) Weed control is absolutely essential during the establishment of the trees. If properly mulched when planted, the new weed sprouts will not be as much of a problem as weed growth from the edges of the prepared area.

b) A certain amount of small seedlings will inevitably be lost to predators such as rats, slugs or birds. Lost seedlings should be replanted 4–6 weeks after the original planting. If not replanted early in the project, it will be very difficult to establish new seedlings in the shade of the older trees.

10

Inoculation steps

Management

The First Pruning

The initial pruning should take place after the trees are well established.

Tip: for faster regrowth leave 10% of foliage when cutting

Depending on rainfall, it

may take 6-12 months before the trees can first be cut back. Even though the trees are vigorous growers, cutting them back does compromise the health of the tree. It is best to cut them the first time during a period of active growth, when they can rapidly sprout new foliage.

Cutting Height

The height at which NFTs are pruned is determined based on how the trees are being used. For example, if the trees are being used to shade other crops (nurse trees), then the pruning height will usually be about 9 feet (3 meters). In alley cropping, the trees are usually cut at 3–4 feet (1–1.3 meters). If you plan to use mechanical means to cut the hedgerows, then the height at which you cut will be determined by the machinery. Most NFT species will regrow best from a height of 18 inches (0.5 meter) or more, so pruning below that height is usually not recommended.

Mulching

NFTs can provide large amounts of mulch for your crop trees. "Mulch" is a layer of decaying organic matter on the ground. Mulch occurs naturally in all forests; it is a nutrient rich, moisture absorbent bed of decaying forest leaves, twigs and branches, teeming with fungal, microbial and insect life. Natural mulch serves as a "nutrient bank," storing the nutrients contained in organic matter and slowly releasing these nutrients for plant growth. Mulch forms a necessary link in nutrient cycling vital for tropical soils. Please see the companion booklet, "A Guide to Orchard Alley Cropping for Fertility, Mulch and Soil Conservation" for details on effective mulching techniques.

Potential weediness of NFTs

By their nature many nitrogen fixing trees grow vigorously under adverse conditions and can seed prolifically. They are pioneers of degraded and disturbed land, and can proliferate freely in such conditions. Because most NFTs are woody, well rooted and hardy under varying climatic conditions, they can be difficult to remove once established. Therefore, it is wise to carefully select NFT species to reduce the risk of spreading new weed species into your area.

The following considerations are valuable in selecting an NFT species:

- 1. Select species which are known to have low seed production in your area, and are unlikely to spread. In Hawaii, Gliricidia and Erythrina are good examples of NFTs with poor seed production.
- 2. Select species which are already naturalized in your area. Managing weedy NFTs such as Albizia and haole koa if they are present in your area will enable you to take advantage of these prolific and useful trees.
- 3. Manage trees so that flowering and seed set do not occur. Pruning for organic matter production or grazing by livestock can be timed to take place just before onset of flowering. In this way, vegetative growth is stimulated, and reproduction is inhibited. Some seed will inevitably be produced, but in vastly reduced quantities.
- 4. If possible, obtain clonal material that produces very little seed or is seed sterile. In this way, vegetative growth is consistent throughout the life cycle of the trees, without the need for timely management as in 3 above.
- 5. Some species that are known to be weedy in certain situations in Hawaii include Acacia confusa, Acacia mearnsii, Leucaena leucocephala, Paraserianthes falcataria, Pithecellobium dulce and Prosopis pallida.

Farmer and happily mulched jackfruit tree.

Bibliography and Further Reading

Nitrogen Fixing Trees

- Kang, B.T., G.F. Wilson, and T.L. Lawson. 1986. Alley Cropping: A Stable Alternative to Shifting Cultivation. International Institute of Tropical Agriculture, Ibadan, Nigeria.
- Glover, Nancy. Profiles of Select Nitrogen Fixing Trees for Small Farm Planting. NFTA, Waimanalo, Hawaii.
- MacDicken, Kenneth G. 1988. Nitrogen Fixing Trees for Wastelands, Regional Office for Asia and the Pacific (RAPA), Food and Agriculture Organization of the United Nations, Bangkok.
- MacDicken, Kenneth G. 1994. Selection and Management of Nitrogen-Fixing Trees. Winrock International Institute for Agricultural Development, Morrilton, Arkansas, USA.
- Macklin, Bill et al. 1989. Establishment Guide. NFTA Cooperative Planting Program NFTA, Hawaii.
- National Academy of Sciences. 1979. Tropical Legumes: Resources for the Future, National Academy Press, Washington, D.C..
- Nitrogen Fixing Tree Association. 1985-1997. *Leucaena Research Reports*. Comprehensive research into Leucaena species.
- Nitrogen Fixing Tree Association. 1982-1997. Nitrogen Fixing Tree Research Reports. Comprehensive research into NFT species, brief, informative articles.
- Nitrogen Fixing Tree Association. 1989-1998. NFT Highlights and FACT Sheets. Forest, Farm and Community Tree Network (formerly Nitrogen Fixing Tree Association), Morrilton, Arkansas, USA.

Agroforestry

- Elevitch, C.R. and K.M. Wilkinson. 2000. Agroforestry Guides for Pacific Islands. Permanent Agriculture Resources, P.O. Box 428, Holualoa, HI 96725.
- International Institute of Rural Reconstruction. 1990. Agroforestry Technology Information Kit, IIRR, Room 1270, 475 Riverside Dr., New York, NY 10115.

Notes:

- Reid, Rowan and Geoff Wilson. 1985. Agroforestry in
 - Australia and New Zealand, Goddard & Dobson, Victoria, Australia.
- Rocheleau, D., et al. 1988. Agroforestry in Dryland Africa, ICRAF, Nairobi, Kenya.

Sources for Publications

agAccess Complete Agricultural Book Source, P.O. Box 2008, Davis, CA 95617-2008 Tel: 800-540-0170 or 916-756-7177, Fax: 916-756-7188. E-mail:books@agaccess.com Web: http://www.agaccess.com
Amazon.com, complete internet bookstore at http://www.amazon.com
Good Earth Publications, 1702 Mountain View Rd., Buena Vista, Virginia 24416 Tel: 800-499-3201 or 540-261-8775, E-mail: goodearth@rockbridge.net
Web: http://www.goodearthpublications.com
The Permaculture Activist, PO Box 5516, Bloomington, IN 47407 USA 812-335-0383
Web: http://www.permacultureactivist.net/

Other resources/organizations (with lists of seed sources and other information)

Forest, Farm, and Community Tree Network (FACT Net) (Formerly the Nitrogen Fixing Tree Association(NFTA)) Winrock International 38 Winrock Drive, Morrilton, Arkansas 72110-9370 USA Tel: 501-727-5435, Fax: 501-727-5417 Email: forestry@winrock.org Web: http://www.winrock.org/fnrm/factnet/factnet.htm

Agroforestry Net P.O. Box 428 Holualoa, Hawaii 96725 Email: email@agroforestry.net Web: http://www.agroforestry.net

Educational Concerns for Hunger Organization (ECHO) 17430 Durrance Rd., N. Ft. Myers, FL 33917 USA Tel: 941-543-3246, Fax: 941-543-5317 E-mail: echo@echonet.org Web: http://www.echonet.org

12